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Abstract

Analysis of 24 years of lunar laser ranging clata has been used to test the Principle of
I;quivalence,  geodetic precession, the PI’AT parameters @ and ~, and &/C;. Recent data can

be fit with an rrns scatter of 3 cm. (a) Using the Norcltvedt  effect to test the I’rincip)e  of
Equivalence, it is found that the Moon and l~;arth accelerate alike in the Sun’s field. The

13 ‘J’his li~nit, combined with a 7 limit fromrelative accelerations match to within 5 x 1 0- .

p]anctary  time delay, gives ~. Including the uncertainty due to compositional diflcrenccs,

the parameter @ diflers  from unity by no rnoxe than 0.0014 ; and, if the weak equivalence
princip]c  is satisfied, the difference is no more than 0.0006. (b) Geodetic precession matches

its cxpcctcd  19.2 milliarcscconds/yr  rate within 0.770. ‘J’his  corresponds to a 1 Yo test of 7.

(c) Apart from the Nordtvcdt  effect, ~ and v can bc tested from their influence on the lunar

orbit. ‘J’hcorctically it is argued that the linear combination 0.8P -i 1.47 can bc tested at the
l% lCVC1 of accuracy. During solutions using numerically derived partial derivatives, higher
sensitivity is found. Both /? and v match the values of general relativity to within 0.005,
and the linear combination /3 -i 7 matches to within 0.003, but caution is advised due to

the lack of theoretical understanding of these sensitivities. (d) No evidence for a changing
gravitational constant is fourld, with lG/G\ <0.9  x 1 0- ‘1. ‘J’here is significant sensitivity

to &/G through solar perturbations on the lunar orbit.

Introduction

in July, 1969, the Apollo 11 lunar mission ~>laccd an array of 100 silica corner-cube laser

rctrorcflcctors  on the Sca of Tranquility. Within a fcw weeks the 2.7 rn telescope at the

Mcl)onald  Observatory on Mt. I,ocke, ‘1’exas,  succccdcd  in detecting photons returned from

a la.scr pu]sc sent to the reflector. lly 1970, the observatory was routinely obtaining ranges

with approximate uncertainties of 20--30 cm.

‘J’wo more reflector arrays were landed by Apollo  missions in 1971: onc at the crater
Fra Mauro  and one at IIadley  Rillc. A French-bui]t reflector aboard the Russian space-

craft I,unakhod  H was placed near the crater I.c Monnicr in early 1973. g’hesc events

provided an opportunity for testing relativity.

The I)ata Set

‘J’llc data set used in this analysis consists of r anging observations from three sites covering

t}]c time from March, 1970 to Jaunary,  1994. )3etwccn 1970 and 1984 the only data used arc



those from the McDonald Observatory. ‘J’hen in 1984 two other stations began acquiring

ranges: one on Mt. Haleakala  on the island  of Maui; the other at the C13RGA station in

Grasse,  France. (In 1985 the 2.7 m McDonald instrument ceased laser ranging operation

and was replaced by the McDonalcl  Laser Ranging System, a dedicated 60 cm telescope,
‘1’hc  Halcakala  facility terminated lunar ranging operations in August, 1990.)

The lasers currently used in the ranging operate at 10 }Iz, with a pulse width of about
200 picosecond; each pulse contains N1018 photons. Under favorable observing conditions

a single reflcctcd  photon is detected once every fcw seconds. For data processing, the

ranges rcprcscntcd  by the returned photons are statistically cornbincd into normal points,

each normal point comprising anywhere from 1 tc) WI 00 photons. There arc 8427 normal

points used in this investigation, spanning the period from hlarch,  1970 through January,

1994,

The ranges of the early 1970s hacl uncertainties of approximately 25 cm. Hy 1976 the

uncertainties of the ranges had dccreascd  to about 15 c]n. Accuracies irnprovcd  further in

the mid-1980s;  by 1987 they were 4 cm, and the present uncertainties arc 2-3 cm.

Estimated I’aramcters

Onc immediate result of lunar ranging was the great increase in the accuracy of the lunar
cphcmcris.  Within six years, the fitting of lunar range data reduced the range error from

approximately one kilometer to a fcw dccimctcrs. Mcasurcmcnts at the highest level of

precision also provide commensurate dctcrminatioll  of the lu?lar  physical libations (rota-

tion), reflector coordinates, elastic deformation, rc)tational  dissipation, rno~nents  of inertia,
low-dcgrcc  gravity field, and I.ove ~lu~nbcrs,  as well as the mass of the k;arth-Moon  systcm,

and Earth station locations, precession and nutation of the equator, and rotation (U’J’1  and

polar motion). Also estimated is the secular acceleration of the geocentric lunar longitude,
arising principally from the interaction of the Moon with the terrestrial ocean tides.

The Mathematical Model

‘J*1]c simultaneous numerical integration of the Moon and planets uscs the solar-systcm

baryccntcr.  ‘l’his approach establishes the ccjordinatc  frame used for the computation of

the observable time delay or “range.” Each transmit and receive time at the ranging
observatory is transformed to the coordinate time for the sc]lar-systern barycenter using

the vector formulation of Moyer [I]. Gcoccntric  observatory coordinates and sc]cnocentric

reflector coordinates are modified with a Lorcntz  transformation. ‘J’he gravity fields of the
Sun and Earth delay the signal. Given a transmit time, the cornputcd rcccivc and reflect

ti~ncs  arc derived from a ‘(]ight-time iteration .“

‘The formulation of the JP1,  p]anct,ary  cphclncris  ~)rograms  is used to estimate the relativity

pararnctcrs.  !l’hc principal gravitational force on the nine planets, the Sun, and the hfloon  is

modeled by considering those bodies to be point rnasscs in the isotropic, Parametrized l~ost-

Ncwtonian (PPN) n-body metric [2]. A thorc)ugh description of the equations of motion for
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the planets and Moon is given in [3]. ‘1’hc portion of the model used in relativity analysis
is the point-mass acceleration for each of the bodies:

(1)

-1-:2>: f~, {[ri  - rj] “ [(2+ 27)~i  - (1 + 27)rj]}(ri  ‘ i’j)
j#i ‘J

+  !3 + 47} ~ !’jr~:
2c~ j~i rij

where ri, ii, and Yi are the solar-syste~n  barycelltric  position, velocity, and acceleration
vectors of body i; ~~j =.: Gmj, where G is the gravitational constant and mj is the mass of

body ~; rij = Irj - -r; I; /3 is the I’1’N  parameter measuring the nonlinearity in superposition
of gravity; 7 is the PPN parameter measuring s~mce  curvature produced by unit rest mass;
vi = Iiil; and c is the s~,ced of light. (g’he ren,aining  part of the equations of motion
accounts for tides, gravitational harmonics, and the effects of the major asteroids.)

‘J’he parameter 7 also directly afl’ects  the measured range. IIlorn a geometrical point of view

the Sun, }{;arth, and Moon each curve space in their vicinity to varying degrees. The effect
of this curvature is to increase the round-trip travel time of a laser pulse. ~’he complete
relativistic light-time expression was derived in heliocentric form by Shapiro [4] in 1964
and independently by IIoldridgc  [5] in 1967. It was formulated in expanded solar-system

barycentric  form by Moyer [6] in 1977. The portion of Moyer’s form due to the Sun and
}’;arth is

(‘]” (1 ; 7)/’s 11, ~~ j $ ~ ‘j’ j ‘.!.-{  .7)i1s!c2.
tj  - ti= “’--1 ‘-

c
)

“  “J)’’E1’’(s:i”:ii”)7  )-’7)’’s’c2 ‘2 )

‘l’he first term on the right is the geometric travel time duc to coordinate separation; the

remaining two terms represent the curvature efrects duc to the Sun and Earth. The complete
equation gives the elapsed coordinate time between two photon events, where an event is
indicated by the subscript i or j. Event  1 is transmission, event 2 is reflection, and event 3
is reception. A rornan  superscript denotes the origin of a vector: 13 is the solar-systc~n
baryccnter,  S is the Sun, and 1’; is the Earth. In the conventicm  used here, the subscript z’
represents the earlier of two photon events, j the later of the two. For the “up-leg” light
time, z’ = 1 (transmission) and j =. 2 (reflection); the “down-leg” values are z’ =- 2 (reflection)
and j =- 3 (reception). In each case, -j =. i -{ 1.

The usc of the symbols in the equation is:
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p ~.,
i lr~],  the magnitude of the vector  from the Sun to photon event i (transmission or

reflection) at coordinate time ti. r; has the corresponding meaning for photon event j

(reflection or reception). Superscripts 11 and It have the meanings stated above.

r?.:: \r; -- , ,rS \ the magnitude of the diflcrcncc  between the vector from the Sun to photon

c~cnt j at time tj and the vector from the SuIl to photon event i at time ti.

7 = the PPN parameter measuring the amount of space curvature produced by unit rest

lnass; ps = GMsU.;  pE =-. GME.,th;  and c =- the speed of light.

When converted to units of lunar-  range, the dominant cflect of space curvature is duc to

the Sun and averages 7.6 m; the contribution from the Earth is about  4 cm. The ignored
effect of the Moon amounts to only 0.6- 0.7 mm.

I,LR and Rc]ativity

l’he  Moon orbits the Earth at a mean distance of 385,000 km. Solar perturbations distort

the orbit from an idealized geocentric ellipse at about  1% of that figur-c.  Since the earliest

dcvclopmcnt  of the classical theory of gravitation, the Moon has been an important test of

that theory. Now that laser range c~bscrvations  to the Moon have accuracies of 3 cm, tests
of relativistic gravitational thec)ry arc practical. ‘J’his  paper presents the results of tests

of the principle of equivalcncc,  geodetic precession, the 1’I’N quantities @ and ~, and the

time-rate of change of the gravitational constant G.

In the analysis and results which follow, the standard errors given for the estimated rela-
tivistic  parameters are ‘(realistic” rather than the formal values derived from the estimation
~)roccss. g’hc reasons arc (1) for a large llulnbcr  of clata points, systematic errors can corru~~t

solutions by more than the formal error (which assumes random errors) without producing
obvious signatures in post-fit residuals. There arc known dynamical systematic effects, such

as solar radiation pressure and internal lunar viscous dissipation, that arc not modeled; and

(2) both the density and orbital samp]c  space of the data arc non-uniform. Most of the
lunar range data arc obtained near the first and last quarter phases of the Moon; such
prcfcrcnt,ial  distribution is of concern.

‘J’his  paper presents t}~c results of the determination of relativity parameters using 1.I,lL
data. l)uring the solution process, howcvm-, approximately 140 additional pararnctcrs  are
estimated, including the cphcmcrides  of all tho planets and the masses of sclcctcd  asteroids.

ltcliable  estimation of the planetary orbits  ancl asteroid masses requires the inclusion of more
than 64000 planetary observations. ‘1’hose data do indeed provide a strong dctcrlnination  of

the aforcrncntioned  parameters, but their ~Jrcscncc  is not directly used to estimate relativity

parameters. This paper is intended as a lunar test of relativity.

!J’hc Principle of Equivalence

Nordtvedt  [7], [8], [9], [10] has published an analysis of the eflccts  of a violation of the

l’rinciple  of Fjquivalence. (A consequence of this principle is that the gravitational mass
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M~ of any object is identical to its inertial mass i141.)  The Earth and hfoon  are accelerated
by the gravitational field of tlic Sun. Failure  of tllc Principle of Equivalence would cause a

differential acceleration between the two bodies, giving a dipole term in the expansion of the

Sun’s gravitational field at the Earth, Nordtvcdt  points out  that a failure of the principle
would lead to an anomalous radial perturbation with the 29.53-day synodic period between

the Moon and Sun. (The synodic  period is the reciprocal of the difference between between

the inverse sidereal periods: 29.53 = [1/27.32 - 1/365.24] - 1,) The argument (designated
1)) with synodic  period is the mean longitude of the Moon minus the mean longitude of the

Sun and is zero at new Moon. Any anolnalous  radial perturbation will be proportional to

Cos D.

A breakdown of the l’rinciple  of Equivalence gives an acceleration of the Moon with respect

to the Earth of GM’lh’/r’3, where G is the gravitational constant, A4’ is the is the mass of

t}le  Sun, r’ is the vector from the Sun to the lEarth-h4cjon  center of mass, r’ is the magnitude
of r’, and E =-- (&fg/kfi)~arth  -- (hfg/Mi)MOon is the diflerencc  between the ]’larth  and Moon

gravitational-to-inertial mass ratios.

‘1’hc lunar mean anomaly is 1; its rate is the natural frequency for radial perturbations.

Nordtvedt’s  original first-order expression for a near-circular orbit can be written

(3)

II} the conventional notation of lunar theory, 1. is the mean longitude of the Moon, 1.’ is the
mean longitude of the Sun (180 degrees from the heliocentric mean longitude of the lh-th-
Moon baryccnter),  a’ is the heliocentric semimajor  axis of t}lc l’:arth-Moon  barycc~ltcr  orbit,
and 1} =-. I. -- 1,’. (I)ots over quantities indicate rates; primes denote quantities referring to
the sun. )

As a check of Nordtvcdt’s  original result a sorncwhat  different derivation based on pertur-
bations of orbital elements was pcrforrncd.  It gives

(4)

When evaluated in meters,

respectively. The difference

the two coefficients  are -2.08 x 101O1; and –2.05 x IOl”lj,

between the two is only 1.4%. It will be noted that the de-
. .

nominator contains the combination 1 - 1), whic}~ is the difference between the solar mean

motion and the lunar perigee precession I,’ - ~. A breakdown of the equivalence principle
would also give rise to a perturbation in longitude proportional to sin D. Iror aA.T. J where

a is the semirnajor  axis, the companion to l’;q.  (4) has a coefkient  --2.1 times larger.

Recently Nordtvedt  [11] has demonstrated that the earlier-derived coeKicients of cos l) need

to be increased by about 40% over the values given above. This amplification arises because

of the strong solar influence on the lunar orbit. The synodic period of the perturbation
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interacts with the 2D tidal expansion of the solar field at the Earth. With this correction

the radial perturbation in meters is

Ar =- --2.87 x 10 IO Ecos D

The longitude perturbation also needs to bc increased by about 40%.

‘J’hc above equations apply to any breakdown c)f the Principle of Equivalence, A breakdown

of the Strong Rquiwdcncc  l’rinciplc,  where gravitational self-energy lJg can influcncc the
gravitational interaction, is possible for bodies the size of the l’;arth and hloon.  Nordtvedt
Lives

‘J’he quantity q depends on the I’1’N l)arameters ~ and 7 according to

1]= 4fl -7- 3

and is zero for General Relativity. Numerically,

E= (- 4.64 x 10- ‘o-l

- 4.45 x 10- ‘“q.

IIlxpressed  in terms of q, the radial perturbation

0.19 x IO-1*)??
(5)

ill lnctcrs  is Ar z 12.8?~cosll.

g’he above values in Eq. (5) arc the same as usecl in [1 2], where the Rarth’s self-energy is
based  oli the result [13] for a structured interior , and the Moon’s self-energy is based on
a hc)mogeneous interior. Adclbergcr  et ccl. [14] nave suggested a 10% larger value for the
II;arth. Our own computation for t}le self-rmcrgies for radially structured interiors for both

bodies recovered the earlier values to the number of digits given in l;q. (5).

Apart from t})c Nordtvedt  effect, there are other causes of cos D signatures in the lunar
distance. }{’rom the classical expansion of the lunar orbit ([1 5], [1 6]) t}lcrc is a 109 km

cos D tcrrn  in the radial coordinate. ‘J’hc amplitude depends on mass ratios, mean motions,
and the ~ncan  distance to the Moon, but t}lcsc  are well enough known that no significant
error occurs for this cocfJicicnt. There is also a relativistic contribution apart from the
Nordtvedt  effect which has been corn~)uted by [1 I], [1 7], [18], [19], [20], [21], and [22]. q’his

relativistic contribution is given as --6 cm cos l) in [1 9]. The numerical integration of the
relativistic equations of motion should include classical and relativistic orbit signatures in
our lunar ephemeris. Williams et al. [12] mention that the interactiorl  between the Ilarth’s
gravitational second harmonic J2 and the Sun gives rise to a - 5 cm cos 1) effect (- 7 cm with
the 40% increase). This force is included in our cquaticms  of motion. Solar radiation pressure

also gives rise to a small signature [1 1], [23]. q’his effect is estimated to be --0.35 cIn cos D.
‘J’hc software contains a model for the solar gravity field  but not for solar radiation pressure,

‘J’IIc differences between the transmit, reflect, and receive times are computed by iteration,

and the time delay of I{;q. (2) is modeled, implying that there should be no anomalous
signatures due to these sources [24].
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The partial derivative for kfg/Mi is generated hy numerical  integration (prior tO the results
in [25] wc used the cos 1} formulation). ‘J’he solution gives E =- (4.3 3: 4.6) x 10 - ‘3. This

is equivalent to --1.2 + 1.3 cm in the coefflc.ient of’ cos l) or, for a violation of the Strong

l;quivalcncc  Principle, to q =- - 0.0010+ 0.0010. ‘J’hc argument D is uncven]y  sampled.

l?angcs  arc never acquired near new Moon bccausc of the bright Sun. q’he former 2.7 m
Mcl)ona]d  Observatory ranging systcm  could acquire ranges near full hfoon,  but the newer,

more accurate, lower-energy-per-pulse systems have acquired fuU-Moon ranges only during
an eclipse. Wishing to bc cautious about unccrtaintics,  the procedure of [26] has been used.

in a root-surn-squared sense, J crn has been addccl to the uncertainty in the coefficient of

cos D, 3.5 x 10’-13 to E, and 0.0008 to q. If the unmodclcd  0.3 cm effect from solar radiation
pressure is applied as a correction, then J; = (3.2 :1 4.6)x 10-”’9, the cos D coefficient is
- 0.9d. 1.3 cm, and q =- -0.00073:0.0010. In the solution for E, the largest correlations of .4
OCCUr w]th ~~~arth+  MOOn , lunar scmimajor  axis a, and eccentricity e. ‘J’hesc  occur bccausc

a cos 21J term is important for the GA4 dctcrlnination  and will not be independent of the
cos II terln bccausc  of nonuniform sampling and of the facts that the scrnimajor  axis is
connected to GM through Kepler’s third law and  that the product ae is better determined
than e.

‘1’he results for E and the cos l) c.ocfficicnt apply to the l’;quivalcncc l’rinciple,  weak or
strong. ]’~arlicr  results for the Nordtvedt  efl’cct  have been interpreted in tcrrns  of the Strong
l]quivalencc  l’rinciple,  the laboratory results for the Weak l;quivalence  }’rincip]c being able

to rule out effects duc to co~nposition.  l,imits as low as those given above require considerat-
ion of the Weak l;quivalencc  Principle [20]. Adclbcrgcr  et aL [14], [27] }~ave  combined their
)!;otvos results with the Princeton [28] and Moscow [29] Eotvos  cxpcrimcnts.  I{’or accelera-

tio~l in the solar field  they place limits on tllc fractiorial  acceleration due to corn~>osition.  Su
et al. [30] have used test bodies which sirnulatc  the compositional differences of the }Carth

and Moon . ~’heir compositional contributicm  to l’; is (- 1.6:1 2.2) x 10-12.  It should bc
noted that the Nordtvcdt  test is a null result. It would bc necessary to have compensating
violations of the Strong and Weak }Cquivalc~lcc  l’rincip]cs,

We wish to derive /3 from q and 7 using @ = (q -I 7 + 3)/4. ‘J’hc compositional constraints
from the ~)rcceding discussion cc)~ltributc  to q ancl ~. Combining the cornpositiona]  [30]

and J,I,lt  results gives q : -0.00434 0,0051. l’hc  uncertainty for 7 is taken to bc 0.002
fro~n the interplanetary time delay [3]]. lncluclirlg  the Weak l~quivalence  l’rinciplc,  @ ,..

0.9989:1:0.0014. Under the assumption that the Weak l’;quivalcnce Principle is satisfied,

@ = 0.9998+ 0.0006.

l’reviously  reported results for the Nordtvcclt  effect are given in [1 2], [25], [26], [32], [33],

[34], [35], and [36]. The last two results have unccrtaintjcs  comparab]c to this paper. ‘J’hc
uncertainty in determinations of the Nordtvcdt  cfI’cct  has dccrcascd by a factor of 30 during

18 years.

Geodetic Precession

‘J’he geodetic precession is also called both the geodesic precession and the de Sitter-J~okker
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precession, It contributes a 19,2 n~as/yr  (millarcseconds/y ear) rate to the lunar node, lon-

gitude of perigee, and mean longitude. The geodetic precession is progradc  and is computed

from [37], [38], [39] to bc
(n’a’/c)2n’

1’9 = (1/2-l 7)- (, -. ~1’) (6)

where c is the speed of light and, for the orbit of the Earth-Moon systcrn  about the Sun,

n’ is the mean motion, a’ the scmimajor  axis, and e’ the eccentricity.

WC review and extend the discussion of [40], which proposes testing for the geodetic preces-
sion using J.I,R. data. ‘J’hc distance from the center of the Earth to the ccntcr  of the Moon

can bc represented by the series with largest terms (in kilometers):

r z. 385001” -. 20905 cosl  - 3699 cos(2D - ~) - 2956 cos2D + s .0 (7)

q’hc first  term is the mean distance, the second results from the eccentricity of the orbit,  and

the third and fourth are from solar perturbations. The lunar mean anomaly is 1 (27.56-day

period), and D is the mean elongation of the hioon  from the Sun (29.53-day period).

For ~mrposcs of explanation, wc call imagine that the least-squares solutions are equivalent
to dct,crmining  alnplitudes,  phases, and ~>hasc rates of i~ldividual  terms in l’;q.  (7). More

exactly, there arc a limited nulnbcr  of free parameters in a solution, so that the ampli-
tudes, phases, and phase rates arc not all indcpcndcnt. ‘J’ypically,  the arnp]itude  of a WCII

sampled frequency can bc measured to about 1 c~n accuracy, ~{’rorn  t he  sccolld tcrrll Onc

expects to determine the mean anomaly to 0.1 rnas and the anomalistic mean motion 1
with correspondingly high accuracy. I,imitations,  which increase the uncertainty, include

the need to also dctcrrnine  quadratic and long-period (18.6 yr) tidal contributions to the
mean anomaly [41], terms at nearby frequencies which require 6.O-year and 8.9-year data
spans to separate fully, and a span of the most accurate data, wl}ich  is 7 years long. From

the two solar perturbation terms and the mean ancmaly,  onc gets 1) with sub-mas  accuracy
and its rate with corresponding accuracy. IL is presumed that the ~)lanctary  data give I.’.

Since 11 z 1, - I,’ :- 6J + 1- I, ‘, the Iongitudc-c)f-pcri gcc rate can bc dctcrmincd. ?J’hc

geodetic precession can bc thought of as being dctcctcd  through its influcncc  on the lunar
longitude-of-perigee precession rate. in additic,n to the errors in ~ and ~.’, we must ask what

errors arc present in the longitude-of-pcri  gcc r ate.

‘J’hc lunar pcrigcc  precession rate is dominated by solar perturbations. While the classical
contributions to the peri.gcc precession rate from lunar and solar orbital parameters arc
mostly very well krlown, two influences merit discussion. An error in the inclination of the

lunar orbit plane to the ecliptic plane of 1 rnas WOUIC1 introduce a 0.18 mas/yr uncertainty
in the pcrigcc  precession rate. q’he orientation of the planes of the lunar orbit, ccli~)tic,
and the l{;arth’s  equator are determined by the I,l,R data, but it takes 18.6 years to get a

full separation of these parameters. l’hus  t}le uncertainty in the lunar inclinatic)n has been

decreasing strongly with time, and a good test of the geodetic precession is a benefit of
the long data arc. q’he error in the first 1,1,1{, tests of geodetic precession ([25], [42]) was
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dominated by the inclination uncertainty. IIecausc  the highest quality data extend over

only the past 7 years, the accuracy of the inclination should continue to improve in the
future. The inclination uncertainty is now less than I mas, and this source of error should

continue to decrease.

‘J’he second significant source of perigee precession error comes from  the lunar  second-degree
gravitational harmonics J 2 and C22. Since the ratio is accurately known from the I,l,R

analyses, we will refer to the error in Jz only. Until rcccntly  we have used a 0.6~0 urlcertainty

for the lunar .72, corresponding to a precession error of 0.14 mas/yr (0.770 of the geodetic
precession). This J2 uncertainty came from [33], which combined the analysis of J,unar

Orbiter IIoppler  data and l,LR data in a single solution. It was the I,unar  Orbiter data which
determined the J2 in that combination. ‘l’here have been two recent developments: I,l,R

can now determine the second-degree lunar harmonics as accurately as the earlier l,unar

Orbiter analysis [26], and the l,unar Orbiter data have been extensively reanalyzed [43]
with an improvement in accuracy. The two results are concorclant.  As wc now include the
lunar J2 as a solution parameter, the J2 unccrtai~lty, like the inclination error, is accounted

for during the least-squares solutions.

“J’he equations of motion for the numerical integration of the lunar and planetary ephemerides
in l{;q.  (1) are those of General ltclativity. ‘J’hey co~ltain t}lc inherent geodetic precession

Cffccts.

WC isolated the terms in the relativistic equations of motion which give rise to the geodetic
~>reccssion,  and wc included a scale factor Kgp representing a possible departure froln  the
IJrcdiction  of General ltclativity:

where the quantities r~j, r~~, and rf~ denote  the solar-systcm  baryccntric  positions of the
l~]arth,  Moorl,  and l~~arth-h400n  baryccntcr,  rcsl)cctivcly,  and tilnc is referenced to the solar-

systcm  bar ycentcr.

‘J’hc solution for the geodetic precession cocficicnt  is

Kgp =- -0.0034 0 .007

‘l’he uncertainty corresponds to a precession error of 0.14 mas/yr.  ‘J’he largest correlation
of 0.56 is with the lunar J2; this parameter is now a more important error source than the

orbit inclination. As the cocficient of the 19.2 mas/yr geodetic precession is (1 -I 2q)/3,
tl)c ~n-ecession  duc to 7 is 12.8 mas/yr. T}ic above result for K ~p corresponds to a 1 Yo test
of ~.

13crtotti et al. [40] did not fit data but arguccl that geodetic I)recession was being satisfied

(a) from the small size of the l,LR residuals, and (b) from the agreement between I,l,R
al]d VI,RI }’~arth rotation rate. Direct fits to the I,l~lt  data ([25], [42]) confirmed geodetic
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precession to 2%. More recently Dickey et ai. [26] give a 0.970 test.  The result above reduces
the uncertainty to 0.7%. All results are consistent with 7 = 1 and General Relativity.

The PI’N l>arameters

The PPN parameters of interest are ~, measuring the non-linearity in the superposition of
gravity, and 7, measuring the amount of space curvature produced by unit rest mass. In
General Relativity both parameters arc unity. Estimates of 7 and P have been obtained by

other investigators. Shapiro et al. [44], Cain et al. [45], and IIellings  [46] used the Viking
orbiter and lander data to determine 7. Rcasenberg  et al. [31] estimate the uncertainty in 7

to bc 0.002, using Viking lander data. The test of the geodetic precession can bc taken as a
1% test of 7, but this statement ignores additional sensitivity to P1’N parameters, discussed

below.

l’he  lack of detection of Nordtvcdt’s  term has been used to imply a small uncertainty on
~. ‘J’csts  of ~ using the planetary range data ([34]) yield a @ uncertainty of 0.003. ‘J’here is
value in attempting to test @ and 7 in an alternate manner.

Distinct from the NTordtvcdt  term, the relativistic point mass interactions of Rq. (1) give
sensitivity of the lunar orbit to /3 and 7. I’artial  clcrivativcs for ~ and 7 have been gener-
ated  from kq. (1) by numerical integration. g’he orbit IJcrturbations  include the geodetic

precession. ‘J’bus, one expects solutions for 7 to have accuracies comparable to, or better
than, the above 1 YO test resulting from the geodetic precession.

I,I,R  solutions for @ and 7 using the sensitivity from the relativistic point mass interactions
and the gravitational time delay II;q. (2), but not the Nordtvedt  term, show a smaller
uncertainty for 7 than would be predicted from t}lc geodetic precession alone, and nearly
identical accuracies for both f? and 7. Solving for ~ and 7 simultaneously: both uncertainties
arc 0.005, there arc no significant cleviations from 1, and the linear combination ~ -t 7 is
better dctcrmincd  with an uncertainty of 0.003. “J’hc challenge is to understand the source
c)f this sensitivity and whether it is valid.

‘J’hc discussion of the geodetic precession prcscntcd  the view that the sensitivity to that
precession comes from the solar perturbations in combination with the elliptical radial
variations. In that discussion, the determination of the rate of t}lc angle 1) = ], - I.J :
GJ-I 1- 1.’ was presented as giving sensitivity to the geodetic prcccssion,  and hcncc  7, through
the lunar pcrigcc  rate. When the relativistic point-mass interactions arc considered, the
rate of 1> also gives sensitivity to @ and q as they influence i.’. In the near circular
approximation, the angular rate of the 14;arth-Mooll  system about the Sun is given by

~.’ =-. [(GM’)  1j2/A’3f2][l - S(8 +- 7/’2)]

where A’ is not the semirnajor  axis a’ but rather the mean distance from the Sun when
relativistic perturbations are included, G is t,hc gravitational constant, and M’ is the solar

mass (GM’ =: n’2a’s).  The scale for relativistic effects is set by

S == GM’/a’c2 = (n’a’/c)2  =. 0.98706x 1 0-8
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with Sa’ =- 1.4766 km and Sn’ = 12.792 mas/yr.  ‘J’he relativistic contribution to the angular
rate is -- Sn’(~ -I 7/2). ‘J’he relativistic contribution to @ – i,’ is then Sn’(0.5  + @ -! 1,57)

when the geodetic precession is included, but is closer to Sn’(0.65  -{ 0.8fl +- 1.47) when a

more exact expression for the perigee rate is included ([1 1], [17], [1 8)). From the experience
with the geodetic precession, the linear combination of ~ and 7 should be determinable to

1%, This argument assumes that the lunar mean anomaly rate is well determined by the

1,1,1? data and the mean distance from the Sun is well determined by the planetary range

data,

‘J’hc solutions include both the 1,1X and planetary ranging data. A normal set of solution

parameters is used for the initial conditions of the Moon and planets, hut the relativity
solution parameters were ‘(turn6d on’) only for the 1,1X data. J30th data sets arc sensitive

to the heliocentric 13aTth-Moon  orbit. in an attempt to isolate the relativistic sensitivities

of the 1,1X data from those of the planetary data, a double standard is being applied to the

heliocentric orbit. ‘l’he planetary data arc included so that appropriate uncertainties in the
heliocentric orbit will be propagated into the lunar orbit during the solutions. The double

standard is not perfect, but we do not see another way to isolate the contributions of the
lunar data from the planetary data, Wc have done a variety of solutions, including those

with planetary relativity parameters turned on, and they do support strong sensitivity of

the 1,1,1? data to relativity.

The solution cannot be finding all of its ~ a~lcl 7 sensitivity through the argument 1), or

the two would not separate. Other terms with smaller amplitudes give less sensitivity to
other argulnents;  for cxamp]e,  sensitivity to the Incan anomaly 1’ of the orbit about the
Sun is an order of magnitude less tl]an  the mean longitude sensitivity. Sensitivity t}~rough
the amplitudes are possibilities. Brumbcrg  and Ivanova [1 7], [18] and Nordtvcdt  [11] have
investigated the sensitivities of the amp]itudcs  to @ and 7. When one considers observable
amplitudes, the ~ and 7 sensitivities are mostly at the few-centimeter level. Ilrurnbcrg  and
lvanova  show two notable possibilities. ‘J’he annual cos 1’ term shows a (-- 16-I 269-  67)-cm

relativistic contribution to its amplitude, and the cos l) term has (33 - 48P -1 107) cm in
its amplitude. Nordtvedt  dots not compute the former term; for the latter term he gets a
similar-sized sensitivity. For General ltclativity  (~ z 7 =- 1), the Brumberg and Ivanova
solution can also bc compared tc] the solution by l,cstrade and Chapront-rJ’ouz6  [19]. ‘J’he

agreement is good except for a few terms involving the annual argurncnt  1’; this discrepancy
seems to be traceable to the 1.66-msec  a~lnual  term in the time transformation between

the solar-system barycenter  and the l~arth-h~clon  barycentcr. ‘J’he amplitudes Inight, give
sensitivity to ~ approaching J Vo.

Concerning the sensitivity of the I,LR  data to @ and 7 through point-mass interactions,
it should be possible to determine the combination (0.8@ + 1.47) to l% accuracy through

an argument rate. ‘J’here is additional sensitivity to @ and 7 through amplitudes. ‘J’here
is numerical evidence that the sensitivity may be less than 170, for which we cannot find
theorctica]  support. It is clearly worthwhile to cornbinc the relativistic solutions from both

the I,I,R  and planetary ranging data. Since the I,J,R data have their sensitivity through

11



the lunar and heliocentric orbit, while the planetary data have their main sensitivity to ~

through the time delay in the solar  gravity field and their main sensitivity to /? through

the precession of Mercury’s perihelion, the combination of data types offers an interesting
possibility. A combined solution would improve the accuracy of separating P and the solar

J2,  which do not separate well when using the existing planetary data alone.

Change in the Gravitational Constant

Analyses of the LLR data have the potential to determine the rate of change of the gravi-
tatic>nal constant G. Tides on the Narth dissipate energy and transfer angular momentum

from the Rarth’s spin to the lunar orbit. This causes the mean distance and orbital pe-

riod to increase. A decreasing G would also cause both distance and period to irlcrease
(2ri/n  -i 3&/a = &/G), but not in the same ratio as tides. Since the tidal effect is rela-

tively large (iz/n = 1.5 x 10 - 1°/yr), and since we are interested in ~/G less than 10-- ll/yr,

accurate tidal modeling is a necessity.

Our present tidal model includes dissipation by both diurnal and semidiurnal  tides on the

l~arth and dissipation in the h400n. ]t’rom recent  solutions  [26] these Contribute to t}lc

total tidal  ;Z or u in the proportions 16%, 86%, and - 2%, respectively. The uncertainty
in the total is 2Y0. More important than the linear increase in distance, the major tidal
acceleration effect comes from the - t2 change in mean anomaly causing a - t2 sin 1 signature

in range, q’he diurnal and se~nidiurnal  terms are separable by a small 18.6 yr terxn in lnean
anomaly [41 ]. The dissipation in the Moon is mainly observed through its influence on
the lunar rotation and not the orbit,. The influence on the orbit is inferred from the lunar

dissipation model. ‘l’here are two possible sources of dissipation in the Moon: solid-body
dissipation, and viscous dissipation at a liquid-core/solid-mantle interface [47]. The former
source is programmed in our software; the latter is not,  The two sources do not give rise to

the same orbital effects, so the lunar contribution is uncertain by most of its present 1.570
effect. Expecting that changes in the lunar Inodel would leave the total it and u the same,

the ~Jresent  tidal model should be capable of supporting tests for &/G with an accuracy of
0.6 x 1 0- ll/yr,  which corresponds to 2% of the tidal effect, or better. Programming the
alternative lunar dissipation model would improve the tidal acceleration computation and
benefit future tests.

A G/G rate of --10-11  /yr causes a 3.9 mn~/yr  increase in the lunar rncan distance (u/a =
-~/G), but if the t2 term in mean anomaly is indistinguishable from tidal accclcration,
then –1/3 of the radial change, or --1,3 mm/yr,  would be distinct from tidal acceleration. A
change in G also causes accelerations in the angular lnotion  about the Sun (it’/n’  = 2&/G),
and the solar perturbation terms in F,q. (7) contribute additional terms. ‘Y}lc contributiorl

from the acceleration in the helic,cent,ric  orbit through the solar perturbation terms gives

coefhcicnts  of periodic terms which are quadratic. in time. With the linear tcrln, the ~
contribution to radial distance t}lat is distinct from tidal acceleration is

~ r~- - 2~rt’t2 [3699 sin 2D -} 2956 sin(2D  -- 1) + . ..] km.
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SoInc small linear terms from the sensitivity of the cocfI_icients  to mean-motion changes
have lwen ignored.

~?or ~ &/G rate of - J ()--11 /yr,  t}lc major terms are

-- 1.28t + (C1.46sin(21~  - 1) -1 0.37 sin 21~)t2 mm, (8)

with t in years. I?or data spans of ~nore than a decade, the nonlinear terms surpass the

linear term in importance (The envelope, rms, and average signature due to ICq. (8) arc
shown in Figure  1). Thus, an increasing data spali has the potential to strikingly ilnprove
the G/G determination.

‘J’he l,LR data have been used to estimate d/G with a null result. A rate of 10- 11/yr

would yield signatures from the solar perturbations excccding  10 cm rms in the early 1970s
and reaching 1 cm rms in 1993;  the lack of such signatures demonstrates the importance
of the early data in conjunction with the more accurcate clata in limiting G. ‘J’hc size

of the signature justifies an uncertainty of 0.7 X 10- ‘l/yr. Including an uncertainty of

0.6 x JO--ll/yr  from the 2% tidal acceleration error gives 0.9 x 10--l]/yr  total uncertainty.
‘J’hc M,}t G/G result is (0.1 =1. 0.9) x 10-”]1 /yr. ‘1’IIc largest correlation is .67 and is with

the scmidiurnal  tidal component.

As a check of the linear effect, a separate solution has estimated a rate in the ~ncan clistance
with uncertainty 3.5 nm~/yr,  equivalent to 2.7 x 10-”11 /yr for &/G. ‘J’hc former solution
implies a smaller G/G uncertainty, illustrati]]g  the doxninance of the nonlinear solar llcr-
turbation  terms.

The present 1,1X results for G/G do not im~n-ovc  significantly on the planetary ranging
results ([34], [48]). Rcccnt  results have also been given for IJanctary data combined with
I,I,R  data [49] and the binary pulsar [50], [51], [52], [53].

comparison

IIricf  rcfcrcnccs  to individual tests have been givcll in the separate s~ctions of this ~)aper.
llroad analyses of the 1,1X data for several relativistic effects have been given by Muller
et al. ([35], [54], [55]). ‘1’hc Earth-Moon orbit  about the Sun contributes uncertainty which

was not considered in the solutions given in [35] and the uncertainties given in [54] and [55]
are lnorc realistic (J. Miiller  private communication, 1994). ‘J’he results and uncertainties
of those later pa.pcrs arc in general agrccmc~]t with this l~apcr.

Conclusions

Solutions using 24 years of lunar laser data have bcmn used for three tests of relativity and
a check of the constancy of the gravitational ccmstant.  ‘J’he I.I~R data have improved with
‘tilllc. T]IC data since ]987 arc particularly accurate with 1987 ranges showing a weighted

rms residual of 4 cm and 1993 rcsidua]s  scattering by 3 c]n.

The NTordtvedt effect gives strong sensitivity tc} any violation of the cquivalcncc  principle.

Using a numerically derived partial derivative for the gravitational to inertial mass ratio,
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1(~~/&f~)E,,,~ -- (~G’/~l)M.on[  <5 x 10-1 9 . Since any violation of the strong cquiv-

alcncc principle depends on ~ and 7, and since there are good determinations of 7 from

interplanetary time delay measurements, then including the uncertainty due to colnposi-

tio~ial  differences bctwccn  the Earth and Moon I@ - 1 I <0.0014. If it is assumed that the
weak equivalence principle is satisfied, then [~ -- 1 I <0.0006.

‘J’he geodetic precession is within 0.7% of its cxpcctcd  value of 19.2 mas/yr. Since this
precession depends on the factor (1 : 27)/3, this result is also a 1% test of q under  the

assuln~)tion that other relativistic effects arc knowrl. ‘l’he lunar J2 is the most ilnl>ortatlt

correlated source of uncertainty.

lndcpcndent  of the Nordtvedt  cfI’cct,  but including the geodetic prccessicm, there arc orbit
perturbations depending on @ arid “~. ‘J’he time delay gives some sensitivity to q. ‘J’hc 1,1,1?

solutions usc numerically derived partial derivatives for the orbit perturbations and indicate
sc~lsitivity  to @ and T beyond that expected from theoretical work. It is certairi  tha~ the

linear combination 0.8@ -{- 1.47 is tested at the 1 % level since it arises through the same

solar perturbation terms which give the geodetic precession test. The work of 13ru1nbcrg
and lvanova  indicates additional sensitivity to ~ and 7 through annual and synodic  lno~lthly

tcrrns,  and Nordtvcdt’s  work suppc]rts  sensitivity in the latter term. Neither  work would
sup~~ort  ~ and 7 accuracy better than 1%. l~rom the I,I,lt solutions @ and 7 match the

values of general relativity within the uncertainty of 0.005, and the linear combination

P -1 7 matches within 0.003. I{’or the lJIJR  solutions it must be cautioned that usc is Inade
of the planetary ranging data to determine the distance of the l’~arth-Moon  orbit fro~n the
Sun, without allowing those data to directly contribute to the dctcrrnination  of the I) I)AT

parameters. It is important to understand this test better, since the sensitivity to 4P -- v
fro]n the Nordtvcdt  effect in combination with the sensitivity tc) ~ -I 7 gives a test of ~ with
uncertainty 0.003, which is second in accuracy only to the interplanetary time delay, and it

can be cxpcctcd  to improve in the future.

On the question of a changing gravitational collsta]lt,  solutions s}iow no significant change,
with lG’/Gl < 0.9 x 10 - 11. It previously has been understood that G and tidal acceleration

both influence the lunar period and mean distance, but d and tidal acceleration would be

separable from a linear term in time. ?Icrc it is shown that the influcncc of @ also causes

nonlinear time signatures, through the solar perturbations, which arc already dominarlt.

‘J’he lunar orbit is highly perturbed by the Sun. ‘J’his pa~)cr’s  tests of relativity and 6
all depend on the solar perturbations. Reasoning from two-body theory is insufficient for
the lunar orbit. All of the tests will irnprovc with additional data of present quality. ‘J’hc

geodetic precession test, depending on a secular effect, will benefit from increased data
span. The tests of @ and q through orbit, perturbations (apart from the Norcltvcdt  cflcct)
arc the least well understood, but hold prornisc. Jr] co]nbination,  the lullar  and planetary
ranging data should bc able to improve on the dynamical determination of t)]{,  ., 1., r .)2.

lrinal]y,  there are lunar G terms, nonlinear in time, which should permit significall[  1,iI i]rc

improvements in testing the constancy of G.
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I?igwc  Caption

l~;ffect  of G/G =- -1 x 10--ll/yr  on the radial coordinate of the Moon. ‘l’he curves  are

annual samples of the observed weighted rrns ran~e  residual and four curves based on the
theoretical signature: the maximum, rms, average, and minimum. ‘l’he reference time in
l~;q. (8) is 1989.
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SIGNATURE DUE TO G/G = -fxfo ’11 /YR
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